Distributed Quantization For Sparse Time Sequences
Alejandro Cohen, Nir Shlezinger, Salman Salamatian, Yonina C. Eldar, Muriel Medard
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 15:44
Analog signals processed in digital hardware are quantized into a discrete bit-constrained representation. Quantization is typically carried out using analog-to-digital converters (ADCs), operating in a serial scalar manner. In some applications, a set of analog signals are acquired individually and processed jointly. Such setups are referred to as distributed quantization. In this work, we propose a distributed quantization scheme for representing a set of sparse time sequences acquired using conventional scalar ADCs. Our approach utilizes tools from secure group testing theory to exploit the sparse nature of the acquired analog signals, obtaining a compact and accurate representation while operating in a distributed fashion. We then show how our technique can be implemented when the quantized signals are transmitted over a multi-hop communication network providing a low-complexity network policy for routing and signal recovery. Our numerical evaluations demonstrate that the proposed scheme notably outperforms conventional methods based on the combination of quantization and compressed sensing tools.