Skip to main content

Smoothing Graph Signals Via Random Spanning Forests

Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelmé, Nicolas Tremblay

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:21
04 May 2020

Another facet of the elegant link between random processes on graphs and Laplacian-based numerical linear algebra is uncovered: based on random spanning forests, novel Monte-Carlo estimators for graph signal smoothing are proposed. These random forests are sampled efficiently via a variant of Wilson’s algorithm –in time linear in the number of edges. The theoretical variance of the proposed estimators are analyzed, and their application to several problems are considered, such as Tikhonov denoising of graph signals or semi-supervised learning for node classification on graphs.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00