Skip to main content

Multi-Agent Deep Reinforcement Learning For Distributed Handover Management In Dense Mmwave Networks

Mohamed Sana, Antonio de Domenico, Emilio Calvanese Strinati, Antonio Clemente

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 14:31
04 May 2020

The dense deployment of millimeter wave small cells combined with directional beamforming is a promising solution to enhance the network capacity of the current generation of wireless communications. However, the reliability of millimeter wave communication links can be affected by severe pathloss, blockage, and deafness. As a result, mobile users are subject to frequent handoffs, which deteriorate the user throughput and the battery life-time of mobile terminals. To tackle this problem, our paper proposes a deep multi-agent reinforcement learning framework for distributed handover management called RHando (Reinforced Handover). We model users as agents that learn how to perform handover to optimize the network throughput while taking into account the associated cost. The proposed solution is fully distributed, thus limiting signaling and computation overhead. Numerical results show that the proposed solution can provide higher throughput compared to conventional schemes while considerably limiting the frequency of the handovers.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00