Skip to main content

Speech Emotion Recognition With Dual-Sequence Lstm Architecture

Jianyou Wang, Michael Xue, Ryan Culhane, Enmao Diao, Jie Ding, Vahid Tarokh

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 15:24
04 May 2020

Speech Emotion Recognition (SER) has emerged as a critical component of the next generation of human-machine interfacing technologies. In this work, we propose a new dual-level model that predicts emotions based on both MFCC features and mel-spectrograms produced from raw audio signals. Each utterance is preprocessed into MFCC features and two mel-spectrograms at different time-frequency resolutions. A standard LSTM processes the MFCC features, while a novel LSTM architecture, denoted as Dual-Sequence LSTM (DS-LSTM), processes the two mel-spectrograms simultaneously. The outputs are later averaged to produce a final classification of the utterance. Our proposed model achieves, on average, a weighted accuracy of 72.7% and an unweighted accuracy of 73.3%—a 6% improvement over current state-of-the-art unimodal models—and is comparable with multimodal models that leverage textual information as well as audio signals.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00