Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 12:03
04 May 2020

The colorization of gray-scale images has always been a challenging task in computer vision. Recently, novel approaches have been introduced for unsupervised image translation between two domains using Generative Adversarial Networks (GANs). Since one can consider the gray-scale and colorful images as two separate domains, we propose a two-stage cycle-consistent network architecture to produce con-vincible images. First, an intermediate image is generated with a relatively uncomplicated objective function at the output. Next, at the second stage, the intermediate image is enhanced via a residual network structure with a more complicated objective function. Furthermore, by employing two inverse networks, a cycle-consistent architecture is formed at both stages. The proposed model is trained on the ImageNet dataset, and the achieved outcomes demonstrate exceptional performance comparing with the state-of-the-art models.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00