Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:11
04 May 2020

In this paper, we study finite-sample properties of the least squares estimator in first order autoregressive processes. By leveraging a result from decoupling theory, we derive upper bounds on the probability that the estimate deviates by at least a positive $\varepsilon$ from its true value. Our results consider both stable and unstable processes. Afterwards, we obtain problem-dependent non-asymptotic bounds on the variance of this estimator, valid for sample sizes greater than or equal to seven. Via simulations we analyze the conservatism of our bounds, and show that they reliably capture the true behavior of the quantities of interest.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00