Skip to main content

Social Learning With Partial Information Sharing

Virginia Bordignon, Ali H. Sayed, Vincenzo Matta

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 15:44
04 May 2020

This work studies the learning abilities of agents sharing partial beliefs over social networks. The agents observe data that could have risen from one of several hypotheses and interact locally to decide whether the observations they are receiving have risen from a particular hypothesis of interest. To do so, we establish the conditions under which it is sufficient to share partial information about the agents’ belief in relation to the hypothesis of interest. Some interesting convergence regimes arise.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00