Analyzing Asr Pretraining For Low-Resource Speech-To-Text Translation
Mihaela C. Stoian, Sameer Bansal, Sharon Goldwater
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 13:57
Previous work has shown that for low-resource source languages, automatic speech-to-text translation (AST) can be improved by pretraining an end-to-end model on automatic speech recognition (ASR) data from a high-resource language. However, it is not clear what factorsâe.g., language relatedness or size of the pretraining dataâ yield the biggest improvements, or whether pretraining can be effectively combined with other methods such as data augmentation. Here, we experiment with pretraining on datasets of varying sizes, including languages related and unrelated to the AST source language. We find that the best predictor of final AST performance is the word error rate of the pretrained ASR model, and that differences in ASR/AST performance correlate with how phonetic information is encoded in the later RNN layers of our model. We also show that pretraining and data augmentation yield complementary benefits for AST.