Low-Frequency Compensated Synthetic Impulse Responses For Improved Far-Field Speech Recognition
Zhenyu Tang, Hsien-Yu Meng, Dinesh Manocha
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 14:38
We propose a method for generating low-frequency compensated synthetic impulse responses that improve the performance of far-field speech recognition systems trained on artificially augmented datasets. We design linear-phase filters that adapt the simulated impulse responses to equalization distributions corresponding to real-world captured impulse responses. Our filtered synthetic impulse responses are then used to augment clean speech data from LibriSpeech dataset [1]. We evaluate the performance of our method on the real-world LibriSpeech test set. In practice, our low-frequency compensated synthetic dataset can reduce the word-error-rate by up to 8.8% for far-field speech recognition.