Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 14:26
04 May 2020

We propose a unified compression framework that uses generative adversarial networks (GAN) to compress image and speech signals. The compressed signal is represented by a latent vector fed into a generator network which is trained to produce high quality signals that minimize a target objective function. To efficiently quantize the compressed signal, non-uniformly quantized optimal latent vectors are identified by iterative back-propagation with ADMM optimization performed for each iteration. Our experiments show that the proposed algorithm outperforms prior signal compression methods for both image and speech compression quantified in various metrics including bit rate, PSNR, and neural network based signal classification accuracy.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00