Real-Time, Universal, And Robust Adversarial Attacks Against Speaker Recognition Systems
Cong Shi, Yi Xie, Yingying Chen, Bo Yuan, Zhuohang Li, Jian Liu
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 13:07
As the popularity of voice user interface (VUI) exploded in recent years, speaker recognition system has emerged as an important medium of identifying a speaker in many security-required applications and services. In this paper, we propose the first real-time, universal, and robust adversarial attack against the state-of-the-art deep neural network (DNN) based speaker recognition system. Through adding an audio-agnostic universal perturbation on arbitrary enrolled speaker's voice input, the DNN-based speaker recognition system would identify the speaker as any target (i.e., adversary-desired) speaker label. In addition, we improve the robustness of our attack by modeling the sound distortions caused by the physical over-the-air propagation through estimating room impulse response (RIR). Experiment using a public dataset of 109 English speakers demonstrates the effectiveness and robustness of our proposed attack with a high attack success rate of over 90%. The attack launching time also achieves a 100X speedup over contemporary non-universal attacks.