Skip to main content

Efficient Trainable Front-Ends For Neural Speech Enhancement

Jonah Casebeer, Umut Isik, Shrikant Venkataramani, Arvindh Krishnaswamy

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 16:24
04 May 2020

Many neural speech enhancement and source separation systems operate in the time-frequency domain. Such models often benefit from making their Short-Time Fourier Transform (STFT) front-ends trainable. In current literature, these are implemented as large Discrete Fourier Transform matrices; which are prohibitively inefficient for low-compute systems. We present an efficient, trainable front-end based on the butterfly mechanism to compute the Fast Fourier Transform, and show its accuracy and efficiency benefits for low-compute neural speech enhancement models. We also explore the effects of making the STFT window trainable.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00