Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:37
04 May 2020

Unsupervised domain adaptation, which leverages label information from other domains to solve tasks on a domain without any labels, can alleviate the problem of the scarcity of labels and expensive labeling costs faced by supervised semantic segmentation. In this paper, we utilize adversarial learning and semi-supervised learning simultaneously to solve the task of unsupervised domain adaptation in semantic segmentation. We propose a new approach that trains two segmentation models with the adversarial learning symmetrically and further introduces the consistency between the outputs of the two models into the semi-supervised learning to improve the accuracy of pseudo labels which significantly affect the final adaptation performance. We achieve state-of-the-art semantic segmentation performance on the GTA5-to-Cityscapes scenario, a widely used benchmark setting in unsupervised domain adaptation.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00