Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 13:35
04 May 2020

It is common practice to use pretrained image recognition models to compute feature representations for the visual data. The size of the feature representations can have a noticeable impact on the complexity of the models that use these representations, and by extension on their deployablity and scalability. Therefore it would be beneficial to have compact visual representations that carry as much information as their high-dimensional counterparts. To this end we propose a technique that shrinks a layer by an iterative process in which neurons are removed from the and network is fine tuned. Using this technique we are able to remove 99% of the neurons from the penultimate layer of AlexNet and VGG16, while suffering less than 5% drop in accuracy on CIFAR10, Caltech101 and Caltech256. We also show that our method can reduce the size of AlexNet by 95% while only suffering a 4% reduction in accuracy on Caltech101.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00