Skip to main content

Recursive Prediction Of Graph Signals With Incoming Nodes

Arun Venkitaraman, Saikat Chatterjee, Bo Wahlberg

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 12:44
04 May 2020

Kernel and linear regression have been recently explored in the prediction of graph signals as the output, given arbitrary input signals that are agnostic to the graph. In many real-world problems, the graph expands over time as new nodes get introduced. Keeping this premise in mind, we propose a method to recursively obtain the optimal prediction or regression coefficients for the recently proposed Linear Regression over Graphs (LRG), as the graph expands with incoming nodes. This comes as a natural consequence of the structure of the regression problem, and obviates the need to solve a new regression problem each time a new node is added. Experiments with real-world graph signals show that our approach results in good prediction performance which tends to be close to that obtained from knowing the entire graph apriori.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00