Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 14:13
04 May 2020

Modeling and inference with multivariate sequences is central in a number of signal processing applications such as acoustics, social network analysis, biomedical, and finance, to name a few. The linear-Gaussian state-space model is a common way to describe a time series through the evolution of a hidden state, with the advantage of presenting a simple inference procedure due to the celebrated Kalman filter. A fundamental question when analyzing a multivariate sequence is the search for relationships between its entries (or the entries of the modeled hidden state), especially when the inherent structure is a non-fully connected graph. In such context, graphical modeling combined with parsimony constraints allows to limit the proliferation of parameters and enables a compact data representation which is easier to interpret by the experts. In this work, we propose a novel expectation-maximization algorithm for estimating the linear matrix operator in the state equation of a linear-Gaussian state-space model. Lasso regularization is included in the M-step, that we solve using a proximal splitting Douglas-Rachford algorithm. Numerical experiments illustrate the benefits of the proposed model and inference technique, named GraphEM, over competitors relying on Granger causality.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00