Skip to main content

Speeding Up Of Kernel-Based Learning For High-Order Tensors

Ouafae Karmouda, Jeremie Boulanger, Remy Boyer

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:12:31
08 Jun 2021

Supervised learning is a major task to classify datasets. In our context, we are interested into classification from high-order tensors datasets. The "curse of dimensionality" states that the complexities in terms of storage and computation grow exponentially with the order. As a consequence, the method from the state-of-art based on the Higher-Order SVD (HOSVD) works well but suffers from severe limitation in terms of complexities. In this work, we propose a fast Grassmannian kernel-based method for high-order tensor learning based on the equivalence between the Tucker and the tensor-train decompositions. Our solution is linked to the tensor network, where the aim is to break the initial high-order tensor into a collection of low-order tensors (at most 3-order). We show on several real datasets that the proposed method reaches a similar accuracy classification rate as the Grassmannian kernel-based method based on the HOSVD but for a much lower complexity.

Chairs:
Shuchin Aeron

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $85.00
    Non-members: $100.00