Dynamic Graph Learning Based On Graph Laplacian
Bo Jiang, Yiyi Yu, Hamid Krim, Spencer Smith
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:11:22
The purpose of this paper is to infer a global (collective) model of time-varying responses of a set of nodes as a dynamic graph, where the individual time series are respectively observed at each of the nodes. The motivation of this work lies in the search for a connectome model which properly captures brain functionality upon observing activities in different regions of the brain and possibly of individual neurons. We formulate the problem as a quadratic objective functional of observed node signals over short time intervals, subjected to the proper regularization reflecting the graph smoothness and other dynamics involving the underlying graph's Laplacian, as well as the time evolution smoothness of the underlying graph. The resulting joint optimization is solved by a continuous relaxation and an introduced novel gradient-projection scheme. We apply our algorithm to a real-world dataset comprising recorded activities of individual brain cells. The resulting model is shown to not only be viable but also efficiently computable.
Chairs:
Mujdat Cetin