Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:10:46
08 Jun 2021

Online Transformer-based automatic speech recognition (ASR) systems have been extensively studied due to the increasing demand for streaming applications. Recently proposed Decoder-end Adaptive Computation Steps (DACS) algorithm for online Transformer ASR was shown to achieve state-of-the-art performance and outperform other existing methods. However, like any other online approach, the DACS-based attention heads in each of the Transformer decoder layers operate independently (or asynchronously) and lead to diverged attending positions. Since DACS employs a truncation threshold to determine the halting position, some of the attention weights are cut off untimely and might impact the stability and precision of decoding. To overcome these issues, here we propose a head-synchronous (HS) version of the DACS algorithm, where the boundary of attention is jointly detected by all the DACS heads in each decoder layer. ASR experiments on Wall Street Journal (WSJ), AIShell-1 and Librispeech show that the proposed method consistently outperforms vanilla DACS and achieves state-of-the-art performance. We will also demonstrate that HS-DACS has reduced decoding cost when compared to vanilla DACS.

Chairs:
Yangyang Shi

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00