Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:06:05
08 Jun 2021

Graph Convolutional Neural Networks (GCNNs) extend CNNs to irregular graph data domain, such as brain networks, citation networks and 3D point clouds. It is critical to identify an appropriate graph for basic operations in GCNNs. Existing methods often manually construct or learn one fixed graph based on known connectivities, which may be sub-optimal. To this end, we propose a residual graph learning paradigm to infer edge connectivities and weights in graphs, which is cast as distance metric learning under a low-rank assumption and a similarity-preserving regularization. In particular, we learn the underlying graph based on similarity-preserving mapping on graphs, which keeps similar nodes close and pushes dissimilar nodes away. Extensive experiments on semi-supervised learning of citation networks and 3D point clouds show that we achieve the state-of-the-art performance in terms of both accuracy and robustness.

Chairs:
Zhong Meng

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $85.00
    Non-members: $100.00