Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:11:17
08 Jun 2021

In this paper, we study concepts of sparsity in the max-plus algebra and apply them to the problem of multivariate convex regression. We show how to efficiently find sparse (containing many −∞ elements) approximate solutions to max-plus equations by leveraging notions from submodular optimization. Subsequently, we propose a novel method for piecewise-linear surface fitting of convex multivariate functions, with optimality guarantees for the model parameters and an approximately minimum number of affine regions.

Chairs:
Yunxin Zhao

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00