Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:14:21
09 Jun 2021

In this paper, we improve Chinese spoken language understanding (SLU) by injecting word information. Previous studies on Chinese SLU do not consider the word information, failing to detect word boundaries that are beneficial for intent detection and slot filling. To address this issue, we propose a multi-level word adapter to inject word information for Chinese SLU, which consists of (1) sentence-level word adapter, which directly fuses the sentence representations of the word information and character information to perform intent detection and (2) character-level word adapter, which is applied at each character for selectively controlling weights on word information as well as character information. Experimental results on two Chinese SLU datasets show that our model can capture useful word information and achieve state-of-the-art performance.

Chairs:
Sicheng Zhao

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00