Skip to main content

A Plug And Play Fast Intersection Over Union Loss For Boundary Box Regression

Zengsheng Kuang, Xian Fang, Ruixun Zhang, Xiuli Shao, Hongpeng Wang

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:09:24
09 Jun 2021

Bounding box regression is a very effective method to improve the localization accuracy of object detection. Recently, the IoU-based regression losses have been widely used in object detection algorithms. However, we observe that they degenerate seriously in the late training period, leading to slow convergence and inaccurate localization. In this paper, we design a Fast Intersection over Union (FIoU) loss, which can not only keep the advantages but also solve the weakness of IoU-based losses. Furthermore, FIoU can be directly applied to Non-Maximum Suppression (NMS) as a criterion to improve the localization performance. Numerous experiments on two popular benchmark datasets show that our method is superior to other the-state-of-art methods.

Chairs:
Simone Milani

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00