Skip to main content

Cold Start Revisited: A Deep Hybrid Recommender With Cold-Warm Item Harmonization

Oren Barkan, Roy Hirsch, Ori Katz, Avi Caciularu, Yoni Weill, Noam Koenigstein

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:11:57
09 Jun 2021

Collaborative filtering-based recommender systems are known to suffer from the item cold-start problem. Most recent attempts to mitigate this problem presented parametric approaches, such as deep content based models. In this paper, we show that a straightforward application of parametric models may lead to discrepancies between the cold and warm items' distributions in the CF space. As a remedy, we propose to combine parametric with non-parametric estimation for robust cold item placement. Extensive evaluation indicates that our method is competitive with other baselines, while producing cold items placement that better resembles the distribution of warm items in the collaborative filtering space.

Chairs:
Jing Liu

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00