Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:14:40
09 Jun 2021

Acoustic imaging has a wide range of real-world applications such as machine health monitoring. Conventionally, large microphone arrays are utilized to achieve useful spatial resolution in the imaging process. The advent of location-aware autonomous mobile robotic platforms opens up unique opportunity to apply synthetic aperture techniques to the acoustic imaging problem. By leveraging motion and location cues as well as some available prior information on the source distribution, a small moving microphone array has the potential to achieve imaging resolution far beyond the physical aperture limits. In this work, we propose to image large acoustic sources with a combination of synthetic aperture and their geometric structures modeled by a conditional generative adversarial network (cGAN). The acoustic imaging problem is formulated as a linear inverse problem and solved with the gradient-based method. Numerical simulations show that our synthetic aperture imaging framework can reconstruct the acoustic source distribution from microphone recordings and outperform static microphone arrays.

Chairs:
Saiprasad Ravishankar

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00