Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:10:13
09 Jun 2021

Adversarial attacks pose a threat to deep learning models. However, research on adversarial detection methods, especially in the multi- modal domain, is very limited. In this work, we propose an efficient and straightforward detection method based on the temporal corre- lation between audio and video streams. The main idea is that the correlation between audio and video in adversarial examples will be lower than benign examples due to added adversarial noise. We use the synchronisation confidence score as a proxy for audiovisual correlation and based on it we can detect adversarial attacks. To the best of our knowledge, this is the first work on detection of ad- versarial attacks on audiovisual speech recognition models. We ap- ply recent adversarial attacks on two audiovisual speech recognition models trained on the GRID and LRW datasets. The experimental results demonstrate that the proposed approach is an effective way for detecting such attacks.

Chairs:
Yifan Gong

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $85.00
    Non-members: $100.00