Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:05:21
09 Jun 2021

Multimodal models have been proven to outperform text-based models on learning semantic word representations. According to psycholinguistic theory, there is a graphical relationship among the modalities of language, and in recent years, the graph convolution network (GCN) has been proven to have substantial advantages in the extraction of non-European spatial features. This inspires us to propose a new multimodal word representation model, namely, GCNW, which uses the graph convolutional network to incorporate the phonetic and syntactic information into the word representation. We use a greedy strategy to update the modality-relation matrix in the GCN, and we train the model through unsupervised learning. We evaluated the proposed model on multiple downstream NLP tasks, and various experimental results demonstrate that the GCNW outperforms strong unimodal baselines and state-of-the-art multimodal models. We make the source code of both models available to encourage reproducible research.

Chairs:
Mahnoosh Mehrabani

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00