Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:10:42
10 Jun 2021

This paper proposes a parallel computation strategy and a posterior-based lattice expansion algorithm for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition. First, lattices from first-pass decoding are expanded by the proposed posterior-based lattice expansion algorithm. Second, each expanded lattice is converted into a minimal list of hypotheses that covers every arc. Each hypothesis is constrained to be the best path for at least one arc it includes. For each lattice, the neural LM scores of the minimal list are computed in parallel and are then integrated back to the lattice in the rescoring stage. Experiments on the Switchboard dataset show that the proposed rescoring strategy obtains comparable recognition performance and generates more compact lattices than a competitive baseline method. Furthermore, the parallel rescoring method offers more flexibility by simplifying the integration of PyTorch-trained neural LMs for lattice rescoring with Kaldi.

Chairs:
Jinyu Li

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00