Semi-Supervised Batch Active Learning Via Bilevel Optimization
Zalán Borsos, Marco Tagliasacchi, Andreas Krause
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:05:23
Active learning is an effective technique for reducing the labeling cost by improving data efficiency. In this work, we propose a novel batch acquisition strategy for active learning in the setting where the model training is performed in a semi-supervised manner. We formulate our approach as a data summarization problem via bilevel optimization, where the queried batch consists of the points that best summarize the unlabeled data pool. We show that our method is highly effective in keyword detection tasks in the regime when only few labeled samples are available.
Chairs:
Seung-Jun Kim