Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:14:20
11 Jun 2021

This paper presents a deep neural network (DNN)-based system for phase reconstruction of speech signals solely from their magnitude spectrograms. The phase is very sensitive to time shifts. Therefore it is meaningful to estimate the phase derivatives instead of the phase directly, e.g., using DNNs and then apply a phase reconstruction method to recombine these estimates to a suitable phase spectrum. In this paper, we propose three changes for such a two-stage phase reconstruction system. For estimating phase derivatives using DNNs, we propose 1) a new regularized cosine loss function and 2) a preprocessing step for the phase derivatives that eliminates systematic offsets in the data. The experimental results demonstrate that these two changes reduce the training duration and stabilize the training with respect to hyperparameter variations. Furthermore, we propose 3) a new simple but effective averaging of weighted derivative estimates for the subsequent phase reconstruction method. Experimental results confirm that the proposed reconstruction method surpasses state-of-the-art systems both in terms of the reconstructed phase spectra and the overall achieved speech quality.

Chairs:
Erica Cooper

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: Free
    Non-members: Free
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00
  • SPS
    Members: Free
    IEEE Members: $25.00
    Non-members: $40.00