Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:07:25
11 Jun 2021

Change detection plays a vital role in monitoring and analyzing temporal changes in Earth observation tasks. This paper proposes a novel adaptive multi-scale and multi-level features fusion network for change detection in very-high-resolution bi-temporal remote sensing images. The proposed approach has three advantages. Firstly, it excels in abstracting high-level representations empowered by a highly effective feature extraction module. Secondly, an elaborate feature fusion module incorporated with the channel and spatial attention mechanism is proposed to provide efficient fusion strategies for multi-scale and multi-level features from bi-temporal images and multiple convolutional layers. Finally, a novel perceptual auxiliary component is designed to capture the perceptual loss of the global perceptual and structural differences and address the optimization problem caused by only using per-pixel loss function in change detection. Comprehensive experiments on two benchmark datasets confirm that our proposed framework outperforms state-of-the-art algorithms in both quantitative assessment and visual interpretation.

Chairs:
Ronan Fablet

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00