THE ROYALFLUSH SYSTEM OF SPEECH RECOGNITION FOR M2MET CHALLENGE
Shuaishuai Ye, Peiyao Wang, Shunfei Chen, Xinhui Hu, Xinkang Xu
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:13:05
This paper describes our RoyalFlush system for the track of multi-speaker automatic speech recognition (ASR) in the M2MeT challenge. We adopted the serialized output training (SOT) based multi-speakers ASR system with large-scale simulation data. Firstly, we investigated a set of front-end methods, including multi-channel weighted predicted error (WPE), beamforming, speech separation, speech enhancement and so on, to process training, validation and test sets. But we only selected WPE and beamforming as our front-end methods according to their experimental results. Secondly, we made great efforts in the data augmentation for multi-speaker ASR, mainly including adding noise and reverberation, overlapped speech simulation, multi-channel speech simulation, speed perturbation, front-end processing, and so on, which brought us a great performance improvement. Finally, in order to make full use of the performance complementary of different model architecture, we trained the standard conformer based joint CTC/Attention (Conformer) and U2++ ASR model with a bidirectional attention decoder, a modification of Conformer, to fuse their results. Comparing with the official baseline system, our system got a 12.22% absolute Character Error Rate (CER) reduction on the validation set and 12.11% on the test set.