Skip to main content

PSEUDO STRONG LABELS FOR LARGE SCALE WEAKLY SUPERVISED AUDIO TAGGING

Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:14:42
09 May 2022

Large-scale audio tagging datasets inevitably contain imperfect labels, such as clip-wise annotated (temporally weak) tags with no exact on- and offsets, due to a high manual labeling cost. This work proposes pseudo strong labels (PSL), a simple label augmentation framework that enhances the supervision quality for large-scale weakly supervised audio tagging. A machine annotator is first trained on a large weakly supervised dataset, which then provides finer supervision for a student model. Using PSL we achieve an mAP of 35.95 balanced train subset of Audioset using a MobileNetV2 back-end, significantly outperforming approaches without PSL. An analysis is provided which reveals that PSL mitigates missing labels. Lastly, we show that models trained with PSL are also superior at generalizing to the Freesound datasets (FSD) than their weakly trained counterparts.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00