Skip to main content

DISENTANGLING CONTENT AND FINE-GRAINED PROSODY INFORMATION VIA HYBRID ASR BOTTLENECK FEATURES FOR VOICE CONVERSION

Xintao Zhao, Changhe Song, Zhiyong Wu, Feng Liu, Shiyin Kang, Deyi Tuo, Helen Meng

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:10:29
10 May 2022

Non-parallel data voice conversion (VC) have achieved considerable breakthroughs recently through introducing bottleneck features (BNFs) extracted by the automatic speech recognition(ASR) model. However, selection of BNFs have a significant impact on VC result. For example, when extracting BNFs from ASR trained with Cross Entropy loss (CE-BNFs) and feeding into neural network to train a VC system, the timbre similarity of converted speech is significantly degraded. If BNFs are extracted from ASR trained using Connectionist Temporal Classification loss (CTC-BNFs), the naturalness of the converted speech may decrease. This phenomenon is caused by the difference of information contained in BNFs. In this paper, we proposed an any-to-one VC method using hybrid bottleneck features extracted from CTC-BNFs and CE-BNFs to complement each other advantages. Gradient reversal layer and instance normalization were used to extract prosody information from CE-BNFs and content information from CTC-BNFs. Auto-regressive decoder and Hifi-GAN vocoder were used to generate high-quality waveform. Experimental results show that our proposed method achieves higher similarity, naturalness, quality than baseline method and reveals the differences between the information contained in CE-BNFs and CTC-BNFs as well as the influence they have on the converted speech.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00