MRI RECOVERY WITH A SELF-CALIBRATED DENOISER
Sizhuo Liu, Philip Schniter, Rizwan Ahmad
-
SPS
IEEE Members: $11.00
Non-members: $15.00Length: 00:06:42
Plug-and-play (PnP) methods that employ application-specific denoisers have been proposed to solve inverse problems, including MRI reconstruction. However, training application-specific denoisers is not feasible for many applications due to the lack of training data. In this work, we propose a PnP-inspired recovery method that does not require data beyond the single, incomplete set of measurements. The proposed self-supervised method, called recovery with a self-calibrated denoiser (ReSiDe), trains the denoiser from the patches of the image being recovered. The denoiser training and a call to the denoising subroutine are performed in each iteration of a PnP algorithm, leading to a progressive refinement of the reconstructed image. For validation, we compare ReSiDe with a compressed sensing-based method and a PnP method with BM3D denoising using single-coil MRI brain data.