Skip to main content

Deep Quantigraphic Image Enhancement via Comparametric Equations

Xiaomeng Wu (NTT Corporation); Yongqing Sun (NTT, Japan); Akisato Kimura (NTT Communication Science Laboratories)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
06 Jun 2023

Most recent methods of deep image enhancement can be generally classified into two types: decompose-and-enhance and illumination estimation-centric. The former is usually less efficient, and the latter is constrained by a strong assumption regarding image reflectance as the desired enhancement result. To alleviate this constraint while retaining high efficiency, we propose a novel trainable module that diversifies the conversion from the low-light image and illumination map to the enhanced image. It formulates image enhancement as a comparametric equation parameterized by a camera response function and an exposure compensation ratio. By incorporating this module in an illumination estimation-centric DNN, our method improves the flexibility of deep image enhancement, limits the computational burden to illumination estimation, and allows for fully unsupervised learning adaptable to the diverse demands of different tasks.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00