Self-supervised representations in speech-based depression detection
Wen Wu (University of Cambridge); Chao Zhang (University of Cambridge); Phil Woodland (Machine Intelligence Laboratory, Cambridge University Department of Engineering)
-
SPS
IEEE Members: $11.00
Non-members: $15.00
This paper proposes handling training data sparsity in speech-based automatic depression detection (SDD) using foundation models pre-trained with self-supervised learning (SSL). An analysis of SSL representations derived from different layers of pre-trained foundation models is first presented for SDD, which provides insight to suitable indicator for depression detection. Knowledge transfer is then performed from automatic speech recognition (ASR) and emotion recognition to SDD by fine-tuning the foundation models. Results show that the uses of oracle and ASR transcriptions yield similar SDD performance when the hidden representations of the ASR model is incorporated along with the ASR textual information. By integrating representations from multiple foundation models, state-of-the-art SDD results based on real ASR were achieved on the DAIC-WOZ dataset.