Skip to main content

Zero-Shot Anomalous Sound Detection in Domestic Environments Using Large-Scale Pretrained Audio Pattern Recognition Models

Alessandro I Mezza (Politecnico di Milano ); Giulio Zanetti (Politecnico di Milano); Maximo Cobos (Universitat de Valencia); Fabio Antonacci (Politecnico di Milano)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
07 Jun 2023

Anomalous sound detection is central to audio-based surveillance and monitoring. In a domestic environment, however, the classes of sounds to be considered anomalous are situation-dependent and cannot be determined in advance. At the same time, it is not feasible to expect a demanding labeling effort from the end user. To address these problems, we present a novel zero-shot method relying on an auxiliary large-scale pretrained audio neural network in support of an unsupervised anomaly detector. The auxiliary module is tasked to generate a fingerprint for each sound occasionally registered by the user. These fingerprints are then compared with those extracted from the input audio stream, and the resulting similarity score is used to increase or reduce the sensitivity of the base detector. Experimental results on synthetic data show that the proposed method substantially improves upon the unsupervised base detector and is capable of outperforming existing few-shot learning systems developed for machine condition monitoring without involving additional training.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00