Skip to main content

ACHIEVABLE ERROR EXPONENTS FOR ALMOST FIXED-LENGTH M-ARY HYPOTHESIS TESTING

jun diao (北京航空航天大学); lin zhou (Beihang University); Lin Bai (BUAA)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
07 Jun 2023

We revisit multiple hypothesis testing and propose a two-phase test, where each phase is a fixed-length test and the second-phase proceeds only if a reject option is decided in the first phase. We derive achievable error exponents of error probabilities under each hypothesis and show that our two-phase test bridges over fixed-length and sequential tests in both Neyman-Pearson and Bayesian settings in the similar spirit of Lalitha and Javidi [1] for binary hypothesis testing. Specifically, our test may achieve the performance close to a sequential test with the asymptotic complexity of a fixed-length test and such test is named the almost fixed-length test. Our results generalize the design and analysis of the almost fixed-length test for binary hypothesis testing to account for more than two outcomes.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00