Skip to main content

SIMULTANEOUSLY LEARNING ROBUST AUDIO EMBEDDINGS AND BALANCED HASH CODES FOR QUERY-BY-EXAMPLE

Anup Singh (Ghent University); Kris Demuynck (Ghent Universitty); Vipul Arora (IIT Kanpur)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
07 Jun 2023

Audio fingerprinting systems must efficiently and robustly identify query snippets in an extensive database. To this end, state-of-the-art systems use deep learning to generate compact audio fingerprints. These systems deploy indexing methods, which quantize finger- prints to hash codes in an unsupervised manner to expedite the search. However, these methods generate imbalanced hash codes, leading to their suboptimal performance. Therefore, we propose a self-supervised learning framework to compute fingerprints and balanced hash codes in an end-to-end manner to achieve both fast and accurate retrieval performance. We model hash codes as a balanced clustering process, which we regard as an instance of the optimal transport problem. Experimental results indicate that the proposed approach improves retrieval efficiency while preserving high accuracy, particularly at high distortion levels, compared to the competing methods. Moreover, our system is efficient and scalable in computational load and memory storage.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00