Identifying Source Speakers for Voice Conversion based Spoofing Attacks on Speaker Verification
Danwei Cai (Duke university); Zexin Cai (Duke University); Ming Li (Duke Kunshan University)
-
SPS
IEEE Members: $11.00
Non-members: $15.00
An automatic speaker verification system aims to verify the speaker identity of a speech signal. However, a voice conversion system could manipulate a person's speech signal to make it sound like another speaker's voice and deceive the speaker verification system. Most countermeasures for voice conversion-based spoofing attacks are designed to discriminate bona fide speech from spoofed speech for speaker verification systems. In this paper, we investigate the problem of source speaker identification -- inferring the identity of the source speaker given the voice converted speech. To perform source speaker identification, we simply add voice-converted speech data with the label of source speaker identity to the genuine speech dataset during speaker embedding network training. Experimental results show the feasibility of source speaker identification when training and testing with converted speeches from the same voice conversion model(s). In addition, our results demonstrate that having more converted utterances from various voice conversion model for training helps improve the source speaker identification performance on converted utterances from unseen voice conversion models.