Skip to main content

Rain2Avoid: Self-supervised Single Image Deraining

Yan-Tsung Peng (National Chengchi University); Wei Hua Li (National Chengchi University)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
08 Jun 2023

The single image deraining task aims to remove rain from a single image, attracting much attention in the field. Recent research on this topic primarily focuses on discriminative deep learning methods, which train models on rainy images with their clean counterparts. However, collecting such paired images for training takes much work. Thus, we present Rain2Avoid (R2A), a training scheme that requires only rainy images for image deraining. We propose a locally dominant gradient prior to reveal possible rain streaks and overlook those rain pixels while training with the input rainy image directly. Understandably, R2A may not perform as well as deraining methods that supervise their models with rain-free ground truth. However, R2A favors when training image pairs are unavailable and can self-supervise only one rainy image for deraining. Experimental results show that the proposed method performs favorably against state-of-the-art few-shot deraining and self-supervised denoising methods.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00