Skip to main content

AE-Flow: AutoEncoder Normalizing Flow

Jakub Mosiński (Amazon); Piotr Bilinski (Amazon); Thomas Merritt (Amazon); Abdelhamid Ezzerg (Amazon); Daniel Korzekwa (Nvidia)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
08 Jun 2023

Recently normalizing flows have been gaining traction in text-to-speech (TTS) and voice conversion (VC) due to their state-of-the-art (SOTA) performance. Normalizing flows are unsupervised generative models. In this paper, we introduce supervision to the training process of normalizing flows, without the need for parallel data. We call this training paradigm AutoEncoder Normalizing Flow (AE-Flow). It adds a reconstruction loss forcing the model to use information from the conditioning to reconstruct an audio sample. Our goal is to understand the impact of each component and find the right combination of the negative log-likelihood (NLL) and the reconstruction loss in training normalizing flows with coupling blocks. For that reason we will compare flow-based mapping model trained with: (i) NLL loss, (ii) NLL and reconstruction losses, as well as (iii) reconstruction loss only. Additionally, we compare our model with SOTA VC baseline. The models are evaluated in terms of naturalness, speaker similarity, intelligibility in many-to-many and many-to-any VC settings. The results show that the proposed training paradigm systematically improves speaker similarity and naturalness when compared to regular training methods of normalizing flows. Furthermore, we show that our method improves speaker similarity and intelligibility over the state-of-the-art.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00