Skip to main content

Untrained Graph Neural Networks for Denoising

Samuel Rey (King Juan Carlos University); Santiago Segarra (Rice University); Reinhard Heckel (TUM); Antonio G. Marques (King Juan Carlos University)

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
09 Jun 2023

A fundamental problem in signal processing is to denoise a signal. While there are many well-performing methods for denoising signals defined on regular domains, including images defined on a two-dimensional pixel grid, many important classes of signals are defined over irregular domains that can be conveniently represented by a graph. This paper introduces two untrained graph neural network architectures for graph signal denoising, develops theoretical guarantees for their denoising capabilities in a simple setup, and provides empirical evidence in more general scenarios. The two architectures differ on how they incorporate the information encoded in the graph, with one relying on graph convolutions and the other employing graph upsampling operators based on hierarchical clustering. Each architecture implements a different prior over the targeted signals. Finally, we provide numerical experiments with synthetic and real datasets that i) asses the denoising behavior predicted by our theoretical results and ii) compare the denoising performance of our architectures with that of existing alternatives.

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00