Skip to main content

Adaptive Multi-Region Network for Medical Image Analysis

Hemeng Tao, Zhuoyi Wang, Yang Gao, Yigong Wang, Latifur Khan

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 11:03
27 Oct 2020

Automated diagnosis of significant abnormalities (or lesions) from radiology images has been well exploited in Deep Learning (DL) because of the ability to model sophisticated features. However, a deep neural network should be trained on a huge amount of data to infer the parameter values. Unfortunately, for the problems in lesion diagnosis, there is only a limited amount of data annotated in a manner that is suitable to learn powerful deep models. Moreover, the lesion in the radiology image is often vague and hard to identify without expert knowledge. In this paper, we focus on previous challenges in the automated diagnosis and propose the approach named Adaptive Multi-region Network (AdapNet). The key idea is that we adaptively encode the similarity of lesions in different context regions through margin-max learning strategy, which incorporates the metrics learned on those regions to enhance the effectiveness of the model. Our experiments show that the proposed method can effectively obtain superior performance compared to the existing methods, on the DeepLesion data sets.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00