Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 14:04
26 Oct 2020

In this work, an enhanced ResNet deep learning network, depth-ResNet, has been developed to classify the five types of Tuberculosis (TB) lung CT images. Depth-ResNet takes 3D CT images as a whole and processes the volumatic blocks along depth directions. It builds on the ResNet-50 model to obtain 2D features on each frame and injects depth information at each process block. As a result, the averaged accuracy for classification is 71.60% for depth-ResNet and 68.59% for ResNet. The datasets are collected from the ImageCLEF 2018 competition with 1008 training data in total, where the top reported accuracy was 42.27%.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00