Skip to main content

CONTINUAL LEARNING OF PREDICTIVE MODELS IN VIDEO SEQUENCES VIA VARIATIONAL AUTOENCODERS

Damian Campo, Giulia Slavic, Mohamad Baydoun, Lucio Marcenaro, Carlo Regazzoni

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 15:01
26 Oct 2020

This paper proposes a method for performing continual learning of predictive models that facilitate the inference of future frames in video sequences. For a first given experience, an initial Variational Autoencoder, together with a set of fully connected neural networks are utilized to respectively learn the appearance of video frames and their dynamics at the latent space level. By employing an adapted Markov Jump Particle Filter, the proposed method recognizes new situations and integrates them as predictive models avoiding catastrophic forgetting of previously learned tasks. For evaluating the proposed method, this article uses video sequences from a vehicle that performs different tasks in a controlled environment.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00