Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 10:12
28 Oct 2020

Due to its ill-posed nature, single image dehazing is a challenging problem. In this paper, we propose an end-to-end feature aggregation attention network (FAAN) for single image dehazing. It incorporates the idea of attention mechanism and residual learning and can adaptively aggregate different level features. In particular, in the proposed FANN, we design a novel block structure consisting of feature attention module, smoothed dilated convolution and local residual learning. The local residual learning allows the less useful information to be bypassed through multiple skip connections. The feature attention module is designed to assign more weight to important features. The smoothed dilated convolution is adopted to enlarge the receptive field without the negative influence of gridding artifacts. The experiments on the RESIDE dataset show that the proposed approach acquires state-of-the-art performance in both qualitative and quantitative measures.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00