Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 10:54
28 Oct 2020

In the machine learning era, sparsity continues to attract significant interest due to the benefits it provides to learning models. Algorithms aiming to optimise the \(\ell_0\)- and \(\ell_1\)-norm are the common choices to achieve sparsity. In this work, an alternative algorithm is proposed, which is derived based on the assumption of a Cauchy distribution characterising the coefficients in sparse domains. The Cauchy distribution is known to be able to capture heavy-tails in the data, which are linked to sparse processes. We begin by deriving the Cauchy proximal operator and subsequently propose an algorithm for optimising a cost function which includes a Cauchy penalty term. We have coined our contribution as Iterative Cauchy Thresholding (ICT). Results indicate that sparser solutions can be achieved using ICT in conjunction with a fixed over-complete discrete cosine transform dictionary under a sparse coding methodology.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00