Skip to main content
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 07:53
26 Oct 2020

Diabetes is one of the most common disease in individuals. Diabetic retinopathy (DR) is a complication of diabetes, which could lead to blindness. Automatic DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning. However, the subtle differences among severity levels make it difficult to capture important features using conventional methods. To alleviate the problems, a new deep learning architecture for robust DR grading is proposed, referred to as SEA-Net, in which, spatial attention and channel attention are alternatively carried out and boosted with each other, improving the classification performance. In addition, a hybrid loss function is proposed to further maximize the inter-class distance and reduce the intra-class variability. Experimental results have shown the effectiveness of the proposed architecture.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00